Fourier Series
Consider
$$
\mathcal{B}=\left\{ \frac{1}{\sqrt{2}} , \cos x, \cos 2x, \cdots, \sin x, \sin 2x , \cdots \right\} \, .
$$
With respect to the inner product
$$
<f,g> = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) dx \, ,
$$
$\mathcal{B}$ is orthonormal.
Fourier series:
$$
f(x)=\frac{a_0}{2} + \sum_{n=1}^{\infty} ( a_n \cos nx + b_n \sin nx ) \, ,
$$
where
$$
a_0=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \, , \, a_n=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \, , \, b_n=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \, .
$$
Example: $f(x)=x$ on $x\in(-\pi,\pi)$ with periodic extension and is normalized. The partial sum of the Fourier series is given by
$$
s_N(x)= 2\sum_{n=1}^N \frac{(-1)^{n+1}\sin nx}{n} \, .
$$
Pointwise convergence
Given $x^*$, $\forall \epsilon>0, \exists N$ such that $n>N$ we have
$$
|s_n(x^*)-f(x^*)|<\epsilon \, .
$$
But, let $x_N=\frac{2N-1}{2N+1} \pi$, we have
$$
s_N(x_N)-f(x_N) > 0.5622 \, .
$$
This implies: $\forall N, \exists x_N$ such that
$$
|s_N(x_N)-f(x_N)| > 8.9\% \mbox{ of the jump.}
$$
Complex form of Fourier Series
$$
f(x)=\sum_{n=-\infty}^{\infty} c_n e^{inx}
$$
where
$c_n=<f(x),e^{inx}>=\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$ or $c_n=\frac{a_n-ib_n}{2}$ and $c_{-n}=\frac{a_n+ib_n}{2}$.
Def (Spectrum): $|c_n|$ vs. $n$.
Reading materials
Lecture Notes p.71-80