Convolution Theorem
$\mathcal{F}(f*g)(s)= \hat{f}(s) \cdot \hat{g}(s)$.
Discrete Fourier Transform
$$\hat{f}_n = \sum_{m=0}^{N-1} f_m e^{-2\pi i mn/N}
$$
Inverse Discrete Fourier Transform
$$f_m = \frac{1}{N} \sum_{n=0}^{N-1} \hat{f}_n e^{2\pi i mn/N}
$$
Fourier Matrix: $F_N=[\omega^{mn}]$ where $\omega=e^{-2\pi i/N}$.
The inverse of the Fourier matrix: $F_N^{-1}=\frac{1}{N} \bar{F}_N$.
Reading Materials
Lecture Notes: p.90-92
No comments:
Post a Comment